Можно задать встречный вопрос: какая единица измерения была первой? может быть радиан придумали раньше... угол в 1 радиан (от слова радиус) --это такой центральный угол окружности, который вырезает из окружности дугу, равную радиусу (вне зависимости от длины радиуса... это всегда один и тот же угол)) мне кажется, что много вычислявшие египтяне просто заметили некоторую закономерность, верную для любой окружности: если длину окружности разделить на ее диаметр, то получится всегда одно и то же число, примерно равное 3.14... аналогичный вопрос: почему градусов именно 360 в окружности, не 10, не 100 (что было бы логичнее при десятичной системе счисления...)
2) Так как АD -биссектриса,то ∠ CAD=∠BAD= 49° Значит ∠A= 98° ∠B=180°-∠A-∠С=180°-98°-71°=10° В треугольнке ABD
∠ADB=180°-∠BAD-∠B=180°-49°-10°=121°
3)В треугольнике АВС АС=ВС, значит треугольник равнобедренный и углы при основании равны,∠ABС= ∠ВAС Так как ∠ ВАD= 35° и сумма острых углов прямоугольного треугольника равна 90 °, то ∠ АВD= 90°- 35°=55° ∠А=∠В=55° ∠С=180°-∠А-∠В=180°-55°-55°=70°
4) Сумма углов четырехугольника АЕОD равна 360° Два угла по 90° (угол Е и угол D) и один 75°( угол А) Значит ∠EOD=360°-90°-90°-75°=105°
какая единица измерения была первой?
может быть радиан придумали раньше...
угол в 1 радиан (от слова радиус) --это такой центральный угол окружности, который вырезает из окружности дугу, равную радиусу
(вне зависимости от длины радиуса... это всегда один и тот же угол))
мне кажется, что много вычислявшие египтяне просто заметили некоторую закономерность, верную для любой окружности: если длину окружности разделить на ее диаметр, то получится всегда одно и то же число, примерно равное 3.14...
аналогичный вопрос:
почему градусов именно 360 в окружности, не 10, не 100 (что было бы логичнее при десятичной системе счисления...)