М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
окей126
окей126
30.07.2020 22:17 •  Геометрия

Коротке плече шлагбаума має довжину 1м, а довге плече -3м. На яку висоту опуститься кінець короткого плеча, якщо кінець довгого плеча підніметься на 1,5м?


Коротке плече шлагбаума має довжину 1м, а довге плече -3м. На яку висоту опуститься кінець короткого

👇
Открыть все ответы
Ответ:
Проблеск
Проблеск
30.07.2020

1) Концы отрезка, который не пересекает плоскость, отдалены от нее на 3 см и 8 см. Проекция отрезка на плоскость равна 12 см. Найти длину отрезка. 

-----

Обозначим отрезок АВ. Расстоянием от точки до плоскости является длина отрезка, проведенного к ней перпендикулярно. 

АА1 и ВВ1 перпендикулярны плоскости, следовательно, перпендикулярны В1А1. 

АА1║ВВ1, 

АВВ1А1 - прямоугольная трапеция. 

ВВ1=3 см.АА1=8 см,

ВС║В1А1 ⇒ А1С=ВВ1=3 см, АС=8-3=5 см. 

ВС=В1А1=12 см. 

Катеты прямоугольного ∆ АВС относятся как 5:12 - треугольник из Пифагоровых троек, ⇒гипотенуза АВ=13 см. 

                    * * *

2) Из точки, которая находится на расстоянии 6 см от плоскости, проведены две наклонные. Найти расстояние между основаниями наклонных, если угол между каждой наклонной и ее проекцией равен 30°, а угол между проекциями наклонных 120°. 

-------

Наклонные АВ и АС,  расстояние до плоскости АН=6 см,  ∠АВН=∠АСН=30°

ВН=СН=АН:tg30°=6√3

∆АНС равнобедренный, угол ВНС=120° ( дано). 

Проведем высоту НМ к основанию ВС. Высота в равнобедренном треугольнике - биссектриса и медиана. ⇒ ∆ ВНМ=∆ СНМ, ∠ВНМ=СНМ=60°

ВМ=ВН•sin60°=6√3•√3/2=9 

BC=2•BМ=18 см (по т.косинусов ВС также равно 18 см)

                     * * * 

3) Из вершины А прямоугольника АВСD со сторонами 7 см и 14 см к его плоскости проведен перпендикуляр АМ=7 см. Найти расстояние от точки М до прямых DС и DB.

--------

Примем АВ=14 см, АD=7 см. Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки до прямой. По т. о 3-х перпендикулярах МD пп DC, МВ пп ВС.

В прямоугольном ∆ MAD катеты равны, следовательно, он равнобедренный с острыми углами, равными 45°. 

MD=AD:sin45°=7√2.

Из прямоугольного ∆ МАВ расстояние МВ=√(AB²+AM²)=√(196+49)=7√5 см

Расстояние от М до BD отрезок МН, перпендикулярный диагонали ABCD.

По т. о 3-х перпендикулярах МН⊥DB,⇒ его проекция АН⊥DB.

АН=AD•AB:BD

∆ ADB=∆ MAB по двум катетам,⇒ DB=MB=7√5

AH=7•14:7√5=14/√5

MH=√(AM²+AH²)=√(441/5)=21/√5=4,2√5 или ≈ 9,39 см



3-й варіант 1. кінці відрізка, який не перетинає площину, віддалені від неї на 3 см і 8 см. проекція
4,5(46 оценок)
Ответ:
irishanovikova01
irishanovikova01
30.07.2020

Искомая площадь - сумма площадей двух сегментов круга, отсекаемых от него ромбом.

Угол СТО опирается на диаметр и равен 90º

Расстояние от точки до прямой - длина отрезка из этой точки, перпендикулярного к этой прямой. 

ОТ ⊥ ВС  и является расстоянием от О до ВС. 

ТО=3 см ( расстояние от точки до прямой - перпендикуляр)

Формула площади сегмента ромба:

S=0,5R²[(πα/180º)-sin α], 

где R радиус круга, α - угол сегмента в градусах, π≈3,14

∆ ВОС~∆ ВОТ ( прямоугольные с общим углом при В)

∠ВОТ=∠ВСО

tg∠ВОТ=ВТ:ТО=√3:3=1/√3. Это тангенс 30º

∆ ТО1С равнобедренный. 

∠ ТСО₁=∠ СТО₁

∠ ТО₁С=180-2∠ТСО₁

Отсюда ∠ТО₁С=180º-2*30º=120º

Из ∆ ТОС

ОС=ТО:sin30º=3:0,5=6 см

R=ОС:2=3 см

Сумма площадей 2-х сегментов 

S=R²[(πα/180º)-sin α],

sin 120º=√3/2

Подставим найденные величины:

S=3²[(π120º/180º)-√3/2]

S=6π-9√3)/2

S=6π-4,5√3≈11,055 см²

-------

В приложении решение дано несколько иное, хотя принцип тот же.  


Диагонали ромба авсд пересекаются в точке о. на отрезке со как на диаметре построен круг. окружность
4,8(80 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ