
В доказательство ненужно ответа
Объяснение:
И так,чтобы AO было равно ОВ нужно доказать, что треугольники равны.
1) угол АОС = углу ДОБ(я просто с русского пишу), так как они вертикальные (свойство вертикальных углов)
2)Треугольники равны по двум углам и стороне между ними
3) Раз треугольники равны, следовательно
напротив равных углов лежат равные стороны, следовательно
AO лежит напротив угла С равного углу Д (по условию) напротив которого лежит сторона ОВ. Отсюда АО = ОВ и следовательно точка О центр сторон.
Объяснение:
1) Строю окружность с центром в т. О;
2) Беру т. В вне окружности , точку А на окружности, соединяем→ ВА- касательная ; из точки В провожу вторую касательную ВС.
3) Измеряю радиус ОА=3 см
Измеряю отрезки ВА и ВС ( это отрезки касательных) : ВА=4,1 см , ВС=4см. Примерно одинаковые⇒отрезки касательных проведенных из одной точки равны ( надо запомнить этот факт). Измеряю ВО=5,1 см.
Применяю т. Пифагора для ΔОАВ, ∠ВАО=90°.
ОВ²=5,1²=26,01≈26
ОА²+ВА²=3²+4,1²=9+16,81=25,81≈26 . Получили ОВ²=ОА²+ВА², т.е т. Пифагора выполняется .