Один катет лежит против угла в 60°, значит второй катет (а) лежит против угла в 90-60=30° и он равен половине гипотенузы (с): с=2а; по теореме Пифагора: (2а)^2=а^2+14^2; 3а^2=196; а=√196/3=14/√3; с=2*14/√3=28/√3; площадь равна половине произведения катетов: S=14*14/2√3=98/√3; площадь равна половине произведения гипотенузы (основания) на высоту: 98/√3=h*28/2√3; h=98/14=7; ответ: 7 Можно по другому: h=a*b/c высота равна произведению катетов, деленная на гипотенузу. Это можно установить из подобия треугольников.
Дано: треугольник ABC - равнобедренный;
BD - биссектриса;
угол ABD = 34°;
AC = 24 см
Найти: угол B; угол BDC; сторону DC
1) ∠В = 2 × ∠ABD = 2 × 34° = 68°, т. к. BD - биссектриса делит Abc на равные углы.
2) треугольник ABC - равнобедренный => биссектриса, проведённая к основанию, является высотой => BD⊥AC и ∠BDC = 90°.
3) треугольник ABC - равнобедренный => биссектриса, проведённая к основанию, является медианой => DC = 1/2 × AC = 1/2 × 25 = 12,5 см.
ответ: ∠В = 68°; ∠BDC = 90°; DC = 12,5 см.