Через дві твірні конуса, кут між якими дорівнюе а, проведено переріз. Кут між плошиною цього перерізу та площиною основи конуса дорівнос В. Знайдіть площу бічної поверхні конуса, якщо його висота дорівнюе Н.
Гегель использует термин Mittelasien для обозначения области, населённой монголами. Термин «Средняя Азия» зафиксирован в трудах историка С. М. Соловьёва, под которым понимается степной географический регион к юго-востоку от Русской равнины и востоку от Каспийского моря.
В древности в Средней Азии существовали довольно крупные государства. В VII—V вв. до н. э. в долине Зарафшана существовало государство Согдиана, в среднем течении Амударьи — Бактрия, в нижнем её течении — Хорезм, в долине Мургаба — Маргиана. Северная часть Средней Азии входила в состав Скифии, а южная часть находилась в сфере влияния Ирана.
Первые сведения о Средней Азии встречаются в трудах Геродота, Страбона, Арриана, Птолемея и других.
Давайте вспомним определение косинуса в прямоугольном треугольнике.Косинус в прямоугольником треугольнике — это отношение прилежащего катета (маленькой стороны рядом с углом) к гипотенузе (самой длинной стороне прямоугольного треугольника).Рассмотрим треугольник AHC. Известно, что cosA=0.8cosA=0.8Но что такое "косинус угла А" по определению? Это отношение прилежащей стороны к гипотенузе. То есть: cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2
Гегель использует термин Mittelasien для обозначения области, населённой монголами. Термин «Средняя Азия» зафиксирован в трудах историка С. М. Соловьёва, под которым понимается степной географический регион к юго-востоку от Русской равнины и востоку от Каспийского моря.
В древности в Средней Азии существовали довольно крупные государства. В VII—V вв. до н. э. в долине Зарафшана существовало государство Согдиана, в среднем течении Амударьи — Бактрия, в нижнем её течении — Хорезм, в долине Мургаба — Маргиана. Северная часть Средней Азии входила в состав Скифии, а южная часть находилась в сфере влияния Ирана.
Первые сведения о Средней Азии встречаются в трудах Геродота, Страбона, Арриана, Птолемея и других.