М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anton277
anton277
04.05.2023 23:41 •  Геометрия

N10) Найдите координаты вершин C и D, квадрата ABCD, если: а) A(-3; 4), B(1, 4)
б) A(2; -3), B(5, -3)


N10) Найдите координаты вершин C и D, квадрата ABCD, если: а) A(-3; 4), B(1, 4) б) A(2; -3), B(5, -3

👇
Открыть все ответы
Ответ:
Nikakrmararle
Nikakrmararle
04.05.2023
Усеченый конус АВСД, О -центр нижнего основания, О1 центр верхнего основания, АО=ВО=радиус нижнего основания=корень(площадь/пи)=корень(пи/пи)=1, АВ-диаметр нижнего основания=2*1=2, ВС-диаметр верхнего основания, ВО1=СО1=радиус верхнего основания=корень(площадь/пи)=корень(16пи/пи)=4, ВС=2*4=8, АВ=СД=5-образующая, сечение-равнобокая трапеция АВСД, АВ=СД, уголА=уголД, проводим высоты ВН и СК на АД, ВН=СК, треугольник  АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК прямоугольник ВС=НК=2, АН=КД=(АД-НК)/2=(8-2)/2=3, треугольник АВН прямоугольный, ВН -высота трапеции=корень(АВ в квадрате-АН в квадрате)=корень((25-9)=4, площадь АВСД (сечения)=(АД+ВС)*ВН/2=(2+8)*4/2=20
4,4(20 оценок)
Ответ:
zhadyra1984
zhadyra1984
04.05.2023
Так как искомая окружность должна касаться хорды АВ данной нам окружности радиуса R=15 и самой этой окружности, ясно, что искомая окружность расположена внутри кругового сегмента, стягиваемого хордой АВ. Поскольку хорда АВ делит круг на два круговых сегмента, существует и два варианта решения.
На рисунке представлены оба варианта расположения искомой окружности.
Точка касания "С" этой окружности с хордой АВ определена.
Проведем радиус  r=O1C искомой окружности  в точку касания. Этот радиус О1С перпендикулярен хорде АВ. Проведем радиус R=ОР данной нам окружности к хорде АВ . Он также перпендикулярен хорде АВ и, кроме того, делит ее пополам в точке М. Тогда АМ=0,5АВ=12, АС=АВ/3=8. СМ=12-8=4.
Опустим из центра искомой окружности перпендикуляр на диаметр КР, включающий в себя радиус R. О1М1=СМ=4. Из прямоугольного треугольника ОАМ по Пифагору найдем отрезок ОМ.
ОМ=√(АО²-АМ²)=√(15²-12²)=9.
В прямоугольнике М1О1СМ сторона ММ1=r, где r - радиус искомой окружности.  
Тогда для первого варианта (окружность расположена в большем секторе):
ОМ1=ММ1-ОМ = r-9. ОО1=R-r. (Так как оба радиуса лежат на одной прямой - радиуса в точку касания Т обеих окружностей). И из прямоугольного треугольника М1О1О по Пифагору имеем:
ОО1²=О1М1²+М1О² или (15-r)²=4²+(r-9)² или
225-30r+r²=16+r²-18r+81. Отсюда r=32/3.
Для второго варианта (окружность расположена в меньшем секторе):
ОМ1=ММ1+ОМ = r+9. И ОО1²=(15-r)²=4²+(r+9)² или 225-30r+r²=16+r²+18r+81. Отсюда r=8/3.

Вокружности, радиус которой равен 15, проведена хорда ав = 24. точка с лежит на хорде ав так, что ас
4,7(16 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ