Возможно (и скорее всего), не самый короткий путь, но всё же.
Рассмотрим тр-ки △ANC и △CMA. У них АС - общая, <NAC=<MCA как углы при основании равнобедренного △ABC, а <ACN=<CAM как половинки этих равных углов (поскольку AM и CN - биссетрисы). => △ANC=△CMA по 2му признаку.
Из равенства △ANC=△CMA следует, что AN=CM. Очевидно также что и BN=BM
По обратной теореме Фалеса Если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные (или пропорциональные) между собой отрезки, начиная от вершины, то такие прямые параллельны.
Значит АС || MN => <AMN=<MAC как внутренние накрест лежащие (секущая AM). А <BMN=<MCA как соответственные (секущая ВС). При этом <AMN=<MAC=1/2<NAC=1/2<MCA => <BMN=2<AMN. Что и требовалось доказать.
В треуг.АВС проведем медианы( они же высоты) АК,СD,ВР Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота АК делит сторону ВС пополам. ВС=ВК+КС ВК=КС=3:2=1,5 - катет АС=3 - гипотенуза Находим катет АК (теор.Пифагора): АК2=АС2 - КС2 АК2=3*3 - 1,5*1,5 АК=корень из 6,75 АК=2,598 Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1 АО+ОК=3(части) - составляют 2,598 АО=2части, АО=2,598:3*2=1,732 Рассмотрим треуг.АОМ ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС Находим АМ(теор.Пифагора): АМ2=АО2+ОМ2 Ом=1;АО=1,732; АМ2=1*1+1,732*1,732 АМ=корень из 4 АМ=2 Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому
Решается очень просто, просто нужно немножко подумать.Постараюсь объяснить! из точки В к основанию АД опускаешь высоту, получается высота ВК. из точки С опускаешь высоту к основанию АД, получается высота СМ. ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14 АК=МД=14/2=7 В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы. В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30 Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14
Объяснение:
Возможно (и скорее всего), не самый короткий путь, но всё же.
Рассмотрим тр-ки △ANC и △CMA. У них АС - общая, <NAC=<MCA как углы при основании равнобедренного △ABC, а <ACN=<CAM как половинки этих равных углов (поскольку AM и CN - биссетрисы). => △ANC=△CMA по 2му признаку.
Из равенства △ANC=△CMA следует, что AN=CM. Очевидно также что и BN=BM
По обратной теореме Фалеса Если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные (или пропорциональные) между собой отрезки, начиная от вершины, то такие прямые параллельны.
Значит АС || MN => <AMN=<MAC как внутренние накрест лежащие (секущая AM). А <BMN=<MCA как соответственные (секущая ВС). При этом <AMN=<MAC=1/2<NAC=1/2<MCA => <BMN=2<AMN. Что и требовалось доказать.