ответ: 7/8
Объяснение:
Пусть Н - середина АВ.
СН - медиана равнобедренного треугольника АВС, значит СН - высота, СН⊥АВ.
DH - медиана равнобедренного треугольника ABD, значит DH - высота.
DH⊥AB.
Следовательно, ∠CHD - линейный угол двугранного угла между плоскостями, искомый.
ΔСНВ: ∠СНВ = 90°, НВ = АВ/2 = 9; по теореме Пифагора
СН = √(СВ² - НВ²) = √(15² - 9²) = √(225 - 81) = √144 = 12
DH - медиана, проведенная к гипотенузе прямоугольного треугольника, значит равна половине гипотенузы:
DH = AB/2 = 9
Из ΔCHD по теореме косинусов:
CD² = CH² + DH² - 2 · CH · DH · cos∠CHD
36 = 144 + 81 - 2 · 12 · 9 · cos∠CHD
216 · cos∠CHD = 189
cos∠CHD = 189 / 216 = 7/8
22,672 см - гипотенуза
Объяснение:
По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов:
c² = a² + b², где c - гипотенуза = ? см, a - катет = 17 см, b - катет = 15 см
c² = 17² + 15² = 289 + 225 = 514 (см²)
с = √514 = 22,672 см