М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
marfmelov
marfmelov
17.04.2023 09:12 •  Геометрия

Стороны прямоугольника равны 9см и 40 см. Найдите диаметр описанного около него окружности

👇
Ответ:
liza8332
liza8332
17.04.2023

Решение в приложении.


Стороны прямоугольника равны 9см и 40 см. Найдите диаметр описанного около него окружности
4,8(80 оценок)
Открыть все ответы
Ответ:
Alisa66611
Alisa66611
17.04.2023

См. чертеж.

Построенные окружности "демонстрируют" скрытые связи, которые есть в конструкции. Если их мысленно убрать, получится построение из условия задачи.

Так как EC перпендикулярно AB, точка Е лежит на окружности. построенной на BC, как на диаметре, и центром этой окружности будет середина BC - точка O. Точно также - точка D. Аналогично, L - середина BE, H - середина CD.

Первое. Я собираюсь доказать, что FE = DG; но делать я это буду "через Китай". Пусть точка K - середина ED. Если удастся доказать, что K лежит на радикальной оси окружностей (BFE) и (DGC), то из этого автоматически будет следовать FE = DG

Про радикальную ось этих окружностей известно две вещи. Во-первых, она перпендикулярна линии центров LH; во-вторых, она проходит через точку A, поскольку точка A - радикальный центр всех трех окружностей, изображенных на чертеже. В самом деле, AB и AC - радикальные оси пар окружностей (BFE) (BCED) и (DGC) (BCDE), а значит, их общая точка имеет равные степени относительно (BFE) и (DGC) (я повторил доказательство теоремы о радикальном центре).

Таким образом, задача свелась к тому, что надо доказать перпендикулярность AK и LH.

Треугольники ADE и ABC подобны, => AO и AK - соответствующие медианы в подобных треугольниках (я пока не знаю, понадобится ли это для решения).

Четырехугольник KHOL - параллелограмм Вариньона для четырехугольника BEDC; его стороны параллельны BD и CE и равны их половинам. => ∠KHO = ∠BAC; (стороны этих углов взаимно перпендикулярны)  кроме того, KH = CE/2 = AC*sin(A)/2; HO = BD/2 = AB*sin(A)/2; то есть треугольники ABC и KHO подобны с коэффициентом sin(A)/2; => треугольник KHO подобен треугольнику EAD, Стороны их одинаково ориентированы (см чертеж, например, ясно, что при повороте на "минус" 90°, то есть по часовой стрелке, и каком-то сдвиге и сжатии, соответствующие стороны переходят друг в друга, EA -> KH; AD -> HO;) => существует поворотная гомотетия, переводящая EAD -> KHO, при этом угол поворота равен 90°, поскольку стороны взаимно перпендикулярны. Ясно, что при этом AK -> HP (Р - точка пересечения диагоналей параллелограмма KHOL, и => середина KO и HL); поэтому AK перпендикулярно HP чтд.

Итак, K лежит на радикальной оси окружностей (BFE) и (DGC), и поскольку KE = KD, EF = DG; (в переводе на "человеческий" язык это означает вот что - у точки K - середины DE, - равны степени относительно этих окружностей, то есть KG*KD = KF*KE; поскольку KE = KD, KF = KG; => EF = DG;)

по условию FG = 7; DE = 3; => EF = DG = 2;


В остроугольном треугольнике АBC проведены высоты BD и СЕ, из вершин В и С на прямую ЕD опущены перп
4,5(22 оценок)
Ответ:
gjkbyf1984
gjkbyf1984
17.04.2023

X, Y - центры окружностей ACD и ABE; O - центр окружности ABC

△XTO~△ABC (∠A =внешнему ∠T =∠X; проекции сторон XT и XO пропорциональны сторонам AB и AC)

Параллелограмм OXTY составлен из двух треугольников, подобных ABC => угол между его диагоналями, то есть между линией центров XY и AO не зависит от выбора точки D.

Общая хорда AH перпендикулярна линии центров => угол хорды AH и положение точки G не зависят от выбора точки D.

Пусть точки D и E совпадают в точке A.

Тогда окружности касаются сторон AB и AC.

∠ABH=∠CAH, ∠ACH=∠BAH => △AHB~△CHA

высоты из H пропорциональны сторонам AB и AС

=> Н лежит на симедиане к основанию BC.

По свойству симедианы BG/GC =(AB/AC)^2


В треугольнике ABC на стороне AB выбрали точку D и провели DE II BC (E - точка пересечения DE и AC).
В треугольнике ABC на стороне AB выбрали точку D и провели DE II BC (E - точка пересечения DE и AC).
В треугольнике ABC на стороне AB выбрали точку D и провели DE II BC (E - точка пересечения DE и AC).
4,4(6 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ