В основании пирамиды лежит квадрат. Обозначим АВСД. Диагонали пересекаются в точке О. Вершину пирамиды обозначим S Рассмотрим треугольник АSО. Он прямоугольный, по теореме Пифагора определим катет ОА² = 100-64=36, ОА=6. Определим сторону основания пирамиды. АВ²=36+36= 72, АВ=√72=6√2. Площадь основания равна S= АВ²=72, Объем пирамиды вычислим по формуле: V=(S · h) / 3 = 72·8/3=24·8=192 (куб. ед.) Все боковые грани пирамиды равнобедренные треугольники равные между собой. Рассмотрим одну из боковых граней: АSВ. Построим высоты SК АК= 3√2. Определим длину SК по теореме Пифагора. SК²=10²-(3√2)²=100-18=82, SК=√82. Определим площадь грани АSВ. S =0,5·АВ · SК = 0,5·6√2·√82=3√164. Площадь боковой поверхности пирамиды равна 4·3√164=12√164. Полная площадь поверхности пирамиды равна 12√164+72≈12·13+72=228(кв. ед.) ответ: 192 куб. ед., 228 кв. ед.
В задании, очевидно, надо определить ПЛОЩАДЬ закрашенной фигуры.
Она представляет собой разность сегментов двух заданных кругов.
Радиусы их равны:
АВ = √((-1)² + (-1)²) = √2,
АС = √(4² + 2²) = √20.
Площадь сегмента круга находится, как разность площади сектора AOB и площади равнобедренного треугольника AOB, выраженную через угол.
Sсегм = (R² /2)(πα° /180° −sin(α°)).
Находим координаты точек пересечения окружностей с заданной прямой решением систем из уравнения окружности и прямой.
Точка Е: x² + y² = 20, 3x - 5y - 2 = 0. E(-62/17; -44/17).
Точка D: x² + y² = 2, 3x - 5y - 2 = 0. D(23/17; 7/17).
Площади сегментов равны:
Площадь Площадь
28.3511 2.1810
ответ: S = 28.3511 - 2.1810 = 26,1701 .