1. ABCD - сечение цилиндра, проведенное параллельно оси. BD = 6 см, ∠BDA = 45°. ΔBDA: ∠BAD = 90°, ∠BDA = 45°, ⇒ ∠DBA = 45°, ⇒ BA = AD = x x² + x² = 6² 2x² = 36 x = √18 = 3√2 H = AB = 3√2 см - высота цилиндра.
Дуга AD 60°, ⇒ ∠AOD = 60° (центральный) ΔAOD: AO = OD = R, ∠AOD = 60°, ⇒ треугольник равносторонний. R = AD = 3√2 см
Sбок = 2πRH = 2π· 3√2· 3√2 = 36π см²
2. ВО = 6 см - высота конуса, ОС = 2√3 дм - радиус основания. ΔВОС: ∠ВОС = 90°, по теореме Пифагора ВС = √(ВО² + ОС²) = √(0,36 + 12) = √12,36 дм
Сечение ΔАВС - равносторонний, так как АВ = ВС как образующие, ∠АВС = 60°. Sabc = a²√3/4, где а - сторона равностороннего треугольника. Sabc = 12,36√3/4 = 3,09√3 дм²
Сначала находим сторону BC по теореме Пифагора она равна корень из(144(12 в квадрате)+25(5 в квадрате))=> BC= 13 см Находим сторону AH(H это пересечение высоты со стороной AC) по теореме-квадрат высоты в прямоугольном треугольнике это произведение отрезков, на которые делится гипотенуза. => AH=144/5=28.8 Отсюда по теореме Пифагора находим сторону AB, она равна корень из(28.8 в квадрате минус 12 в квадрате)=> AB=31.2 Косинус - это отношение прилежащего катета к гипотенузе. Косинус угла A- это AB/AC=0.923076923(можете округлить)
(x- xM)^2+ (y- yM)^2= R^2, где радиус равен расстоянию между точками М и К.
Если не этого, то что можно знать по представлению окружности в декартовых координатах?
B.Нечаю. (x+3)^2+ (y- 1)^2=20.
Объяснение: