М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ban8
ban8
11.02.2021 04:34 •  Геометрия

Дана пирамида abcd , ab=√3 ,tga=6 , найти do. подробное решение

👇
Ответ:
innaecaln
innaecaln
11.02.2021
Хорошо, я с удовольствием помогу вам решить эту задачу!

Изначально давайте проанализируем данные, которые даны в задаче:
- Мы имеем пирамиду abcd, где ab = √3 (это значит, что сторона ab равна корню квадратному из 3).
- Также дано, что тангенс угла а равен 6.

Вам нужно найти значение do, и для этого нам понадобится теорема Пифагора и определение тангенса.

Первым шагом давайте найдем значение bc (сторона bc пирамиды abcd). Поскольку мы знаем, что ab = √3, мы можем использовать теорему Пифагора:
bc^2 = ac^2 + ab^2
bc^2 = do^2 + (√3)^2
bc^2 = do^2 + 3

Теперь у нас есть одно уравнение с двумя неизвестными (bc и do), но у нас также есть другая информация о функции тангенса.

Для угла а мы знаем, что tg(a) = 6. По определению тангенса:
tg(a) = opposite/adjacent = bc/do

Теперь мы можем использовать это знание, чтобы установить связь между bc и do:
6 = bc/do
bc = 6do

Теперь, чтобы продолжить решение, мы можем заменить значение bc в нашем первом уравнении:
(6do)^2 = do^2 + 3
36d^2o^2 = d^2o^2 + 3
36d^2o^2 - d^2o^2 = 3
35do^2 = 3

Теперь, чтобы найти значение do, давайте избавимся от квадратного корня на правой стороне уравнения, возведя обе части в квадрат:
(35do^2)^2 = 3^2
1225d^2o^4 = 9

Теперь разделим обе части на 1225, чтобы изолировать do:
d^2o^4 = 9/1225
d^2o^4 = 1/135.55

Чтобы найти dо, возведем обе стороны в 1/4 степень (корень четвертой степени):
(d^2o^4)^(1/4) = (1/135.55)^(1/4)
do = (1/135.55)^(1/4)

Таким образом, мы нашли значение do с помощью пошагового решения, основанного на теореме Пифагора и определении тангенса.

Пожалуйста, обратите внимание, что этот ответ может быть численно выражен и округлен для удобства.
4,4(75 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ