Даны координаты вершин трапеции ABCD: . Напишите уравнения прямых, содержащих
а) диагонали AC и BD;
б) среднюю линию трапеции.
Решение (рис. 1):
Рис. 1. Иллюстрация к задаче
общее уравнение прямой, оно задается конкретной тройкой чисел a, b и c.
а) Найдем уравнение прямой АС, для этого в уравнение прямой подставляем координаты точек А и С:
Как и раньше, получили два уравнения с тремя неизвестными, будем решать ее методом алгебраического сложения.
Если с=0, то прямая проходит через начало координат. Подставим с в любое уравнение:
б) Найдем уравнение прямой BD: точки B и D имеют одну и ту же ординату, равную 1, поэтому уравнение прямой BD.
в) Найдем координаты точки M – середины CD и точки N – середины AB:
Рис. 2. Иллюстрация к задаче
Подставляем координаты точек M и N в уравнение
Подставляем в первое уравнение:
task/21175083 Даны векторы: a = (1; 2) и b = (-2 ; 3)
Найдите значение выражения:
* * * 2a= (2;4) ; -3b =(6 ; -9); (-1/2)a = (-1/2 ; -1) ; (-1/3)b =(2/3 ; -1) ; |a| =√(1²+2²) =√5 ; | b| =√ ( (-2)²+3²) =√13 ; a*b = 1*(-2) + 2*3 = 4 ; a+b =(-1 ; 5 ) ; a - b =(3; -1 ) * * *
4 ) b(a+b) = b*a + b*b = 1*(-2)+2*3 + (-2)*-2) + (3*3) =4 +13 = 17
* * * b*b =|b|*|b|* cos(b^b) =| b |²* 1 =| b |² ( b )² = | b |² * * *
5 ) ( a + b)² = a² +2a*b + b² = |a|² +2a*b + | b |² =(√5)²+2*4+(√13)²=26
* * * ( a + b)² =(-1)² + 5² = 26 * * *
6 ) ( a - b)² = a² - 2a*b + b² = |a|² -2a*b + | b |² =(√5)²-2*4+(√13)²= 10
* * * ( a - b)² =3² + (-1)² = 10 * * *
7 ) ( a + b)(a - b) = a² - b² =(√5)²- (√13)²= 5 - 13 = -8
* * * ( a + b)(a - b) =(-1)*3 ; 5*(-1) = - 8 * * *