різносторонній
я так вважаю
Номер 1
Если один из углов равнобедренного треугольника равен 134 градуса,то это угол при вершине
Углы при основании оавеобедренного треугольника равны между собой и каждый из них равен
(180-134):2=23 сантиметра
Номер 2
Если в прямоугольном треугольнике угол САВ равен 60 градусов,то второй острый угол равен
90-60=30 градусов
Катет АС лежит против угла 30 градусов,это значит,что он в два раза меньше гипотенузы
АС=18:2=9 см
Номер 4
Если отрезки соотносятся,как 4:5,то
4+5=9 частей
Чему равна 1 часть?
36:9=4
АК=4•4=16 см
ВК=4•5=20 см
Номер 5
Внутренние углы при основании равнобедренного прямоугольного треугольника равны по 45 градусов
Внешний и смежный ему внутренний угол в сумме равны 180 градусов
Внешний угол при основании равнобедренного прямоугольного треугольника равен
180-45=135 градусов
Номер 6
Основание. Х
Боковая сторона Х-5
Х+Х-5+Х-5=35
3Х=35+10
ЗХ=45
Х=15
Основание 15 см
Каждая боковая сторона
15-5=10 см
Номер 7
Сумма всех внутренних углов треугольника равна 180 градусов
Если углы соотносятся как 2:5:8,то
2+5+8=15 частей
Чему равна 1 часть?
180:15=12
<1=12•2=24 градуса
<2=12•5=60 градусов
<3=12•8=96 градусов
Номер 8
Если две прямые параллельны,и сумма двух углов равна 60 градусов,то градусная мера одного угла равна
60:2=30 градусов
Это могут быть вертикальные углы,или же внутренние накрест лежащие или соответственные,или внешние накрест лежащие,это один из односторонних углов
Номер 9
Я начертила чертёж треугольника САВ,провела биссектрису АК и угла МАК как-то не обнаружила.Пишите правильно задание
Объяснение:
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Вот так вот
Объяснение:
Удачи в учёбе