Высота, проведенная из вершины, противолежащей основанию, по Пифагору равна: √(25-9) = 4. Итак, это меньшая высота. Вторая высота делит наш треугольник на два прямоугольных с общим катетом h - искомой высотой. По Пифагору: h² = 25 - x² и h² = 36 - (5-x)², где х - часть боковой стороны, отсекаемой высотой h, считая от вершины, противоположной основанию. Приравниваем оба уравнения и получаем: 25 - x² = 36 - (5-x)², откуда 14=10х и х=1,4. тогда искомая высота по Пифагору: √(25-1,4²) =√23,04 = 4,8.
Решение: Радиус окружности описанной вокруг равностороннего треугольника находится по формуле: R=√3/3 - где а-сторона треугольника Высота в таком треугольнике можно найти по формуле: h=√3/a*a - где а -сторона треугольника По этой формуле найдём сторону равностороннего треугольника: а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см) Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности: R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
Объяснение:
Они равны по модулю и противоположно направленные.