Пусть будет трапеция АВСЕ, где ВС и АЕ - основания, причём ВС=1, АЕ=6. Опустим высоты ВН и СМ на основание АЕ. ВНМС - прямоугольник, потому что ВС параллельно НМ и ВН параллельно СМ, а между собой они перпендикулярны. Значит, НМ=ВС=1, значит, АН+МЕ=5, а раз трапеция равнобедренная, значит, прямоугольные треугольники АВН и СМЕ равны, значит, АН=МЕ=2,5. А - острый угол, косинус А равен 5\7 равен АН\АВ, откуда АВ=(7\5)*АН=3,5
Периметр трапеции равен сумме дли всех её сторон, равен 6+1+3,5+3,5=14
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
S= (6+10)/2 * 10 = 80 вот решение