Построить касательную к данному кругу: а) параллельную данной прямой. Из центра окружности опустить перпендикуляр на данную прямую. Он пересечёт окружность в точке касания. Через полученную точку провести прямую, перпендикулярную построенному перпендикуляру к данной прямой. Эта прямая будет параллельна данной прямой.
б) перпендикулярную к данной прямой. Из центра окружности опустить перпендикуляр на данную прямую. Из центра окружности восстановить перпендикуляр к построенному перпендикуляру. Он пересечёт окружность в точке касания. Через полученную точку провести прямую, перпендикулярную к данной прямой. Эта прямая и будет перпендикулярна данной прямой.
в) под данным острым углом к прямой. В любой точке данной прямой построить прямую под заданным к ней углом. Затем по пункту а) построить параллельную касательную прямую.
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
а) параллельную данной прямой.
Из центра окружности опустить перпендикуляр на данную прямую.
Он пересечёт окружность в точке касания.
Через полученную точку провести прямую, перпендикулярную построенному перпендикуляру к данной прямой.
Эта прямая будет параллельна данной прямой.
б) перпендикулярную к данной прямой.
Из центра окружности опустить перпендикуляр на данную прямую.
Из центра окружности восстановить перпендикуляр к построенному перпендикуляру.
Он пересечёт окружность в точке касания.
Через полученную точку провести прямую, перпендикулярную к данной прямой.
Эта прямая и будет перпендикулярна данной прямой.
в) под данным острым углом к прямой.
В любой точке данной прямой построить прямую под заданным к ней углом.
Затем по пункту а) построить параллельную касательную прямую.