1. 8 см
2. 4√3 см
Объяснение:
1. Сторона А(1)А(2) равна радиусу вписанной окружности, то есть двум диаметрам = 2R
В эту окружность вписан правильный треугольник со стороной 4√3 см.
Радиус окружности, описанной около правильного треугольника со стороной а, равен R = a/√3.
Находим радиус: R = 4√3/√3 = 4 см.
Значит, сторона А(1)А(2) равна 2R = 2*4 = 8 см
2. Сторона А(1)А(2) - это сторона правильного шестиугольника, описанного около окружности, в которую вписан правильный треугольник со стороной 6√3 см.
Сначала находим радиус окружности, описанной около этого правильного треугольника, через его сторону. R = a/√3 = 6√3/√3 = 6 см.
Известно, что правильный шестиугольник разбивается на шесть правильных треугольников с высотой, равной радиусу вписанной окружности. Из этого следует, что сторона правильного шестиугольника находится через радиус вписанной окружности по формуле: а = R/sin 60°.
Находим сторону: а = 6:(√3/2) = 6*2 : √3 = 4√3 см
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4