У трикутнику АВСD з вершинами в т. В(2;-3) В(-2;3) С(6;-3) проведено середню лінію РК паралельну стороні АС. Скласти рівняння прямо, що містить цю середню лінію
Условие: "Из точки А до плоскости альфа проведены наклонные АВ и АС, которые образуют со своими проекциями на данную плоскость углы по 30°. Найти данные наклонные и расстояние от точки А до плоскости альфа, если угол между ПРОЕКЦИЯМИ наклонных равен 90°, а расстояние между основаниями наклонных равно 6 см."
Решение.
Опустим перпендикуляр АН из точки А на плоскость альфа.
Треугольники АВН и АСН равны по катету и острому углу. Следовательно, наклонные АВ и АС равны, равны и их проекции. Треугольник ВНС - прямоугольный, так как угол между проекциями ВН и СН равен 90° (дано). Так как проекции равны, треугольник ВНС равнобедренный. Пусть катеты равны х, тогда по Пифагору:
2х² = 6² => х = √6см.
Итак, ВН = СН = √6 см.
В прямоугольном треугольнике АВН катет АН лежит против угла В, равного 30° (дано). Тогда АВ = 2·ВН и по Пифагору:
Пусть стороны АВ и ВС треугольника соответственно равны 1 и √15 а его медиана ВМ равна 2.На продолжении медианы BM за точку M отложим отрезок MD, равный BM. Из равенства треугольников ABM и CDM (по двум сторонам и углу между ними) следует равенство площадей треугольников ABC и BCD. В треугольнике BCD известно, что ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1 по формуле герона р=(√15+4+1)/2=(√15+5)/2 s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)= √((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16) =√(((25-15)(15-9))/16)=√60/√16=2√15/4 2*3.87/4=1.94
АВ = АС = 2√6 см, АН = 3√2 см.
Объяснение:
Условие: "Из точки А до плоскости альфа проведены наклонные АВ и АС, которые образуют со своими проекциями на данную плоскость углы по 30°. Найти данные наклонные и расстояние от точки А до плоскости альфа, если угол между ПРОЕКЦИЯМИ наклонных равен 90°, а расстояние между основаниями наклонных равно 6 см."
Решение.
Опустим перпендикуляр АН из точки А на плоскость альфа.
Треугольники АВН и АСН равны по катету и острому углу. Следовательно, наклонные АВ и АС равны, равны и их проекции. Треугольник ВНС - прямоугольный, так как угол между проекциями ВН и СН равен 90° (дано). Так как проекции равны, треугольник ВНС равнобедренный. Пусть катеты равны х, тогда по Пифагору:
2х² = 6² => х = √6см.
Итак, ВН = СН = √6 см.
В прямоугольном треугольнике АВН катет АН лежит против угла В, равного 30° (дано). Тогда АВ = 2·ВН и по Пифагору:
АН² = (2ВН)² - ВН² => АН = √(4·6 - 6) = 3√2 см.
ответ: АВ = АС = 2√6 см, АН = 3√2 см.