Вершини трикутника розміщені в точках A(-3;2;4), B(1;-10;0), C (3;-3;2). 1) Знайдіть довжину медіани, проведеної з вершини C. 2) Обчисліть косинус кута між прямими CA і CM, де M —середина сторони AB.
Параллелограмм АВСД: АВ=СД=8, ВС=АД=10, ВД=7,2. АМ - биссектриса угла угла А СК - биссектриса угла угла С Точки М и К - точки пересчения биссектрис с диагональю ВД. ВД=ВМ+МД=ВМ+МК+КД=ВК+КД По свойству биссектрисы: АВ/ВМ=АД/МД 8/ВМ=10/(ВД-ВМ) 8(7,2-ВМ)=10ВМ 18ВМ=57,6 ВМ=3,2 Т.к. в параллелограмме противоположные углы равны (<A=<C), то значит и <ABM=<ДСК. <ABД=<СДВ как накрест лежащие углы при пересечении параллельных прямых АВ и СД секущей ВД Получается, что ΔАВМ=ΔДСМ по стороне и прилежащей к ней углам. Значит ВМ=КД=3,2 Расстояние МК=ВД-ВМ-КД=7,2-2*3,2=0,8 ответ: 0,8
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
АМ - биссектриса угла угла А
СК - биссектриса угла угла С
Точки М и К - точки пересчения биссектрис с диагональю ВД.
ВД=ВМ+МД=ВМ+МК+КД=ВК+КД
По свойству биссектрисы:
АВ/ВМ=АД/МД
8/ВМ=10/(ВД-ВМ)
8(7,2-ВМ)=10ВМ
18ВМ=57,6
ВМ=3,2
Т.к. в параллелограмме противоположные углы равны (<A=<C), то значит и <ABM=<ДСК.
<ABД=<СДВ как накрест лежащие углы при пересечении параллельных прямых АВ и СД секущей ВД
Получается, что ΔАВМ=ΔДСМ по стороне и прилежащей к ней углам.
Значит ВМ=КД=3,2
Расстояние МК=ВД-ВМ-КД=7,2-2*3,2=0,8
ответ: 0,8