опустим из тупого угла трапеции высоту на большее основание. получим прямоугольный треугольник с гипотенузой=диагонали трапеции, один из острых углов которого 30° из условия . высота, как катет, противолежащий углу 30°, равна половине диагонали и равна 2 см боковая сторона равна 2√2, отсюда отрезок, который высота отрезала от большего основания, равен 2 см, так как боковая сторона равна диагонали квадрата со стороной 2 см (по формуле диагонали квадрата а√2). так как образовался равнобедренный прямоугольный треугольник, острые углы в нем 45°, и поэтому второй угол при большем основании равен 45°. отсюда тупой угол при меньшем основании равен 180-45=135°.
2 случай: если внешний угол при вершине, тогда смежный с ним=64, а сумма углов при основании=116. Тк углы при основании равнобедренного треугольника равны, то каждый будет равен 116:2=58.
2) 1 случай: аналогично. Углы при основании=180-100=80, угол при вершине=180-80-80=20
2 случай: угол при вершине=80. Сумма углов при основании=100. Каждый угол при основании =100:2=50