Объяснение:
1. Р = 18см.
2 АС = 30/(√3+1) м.
Объяснение:
Площадь треугольника равна (1/2)·a·b·Sinα, где a и b - стороны треугольника, а α - угол между этими сторонами. В нашем случае
а = 3х, b = 8x, Sinα = √3/2. Тогда
(1/2)·24х²·(√3/2) = 6√3 => x = 1 см.
Имеем две стороны треугольника: 3см и 8см.
По теореме косинусов находим третью сторону:
Х = √(3²+8²- 2·3·8·Cos60) = √49 = 7см.
Периметр треугольника равен 3+8+7 = 18см.
2. По теореме синусов в треугольнике АВС:
АС/Sinβ = AB/SinC.
∠C = 180 - 60 - 45 = 75°. Sin75° = Sin(45+30). По формуле
Sin(45+30) = Sin45·Cos30 + cos45·Sin30 = (√6+√2)/4.
Тогда АС = АВ·Sinβ/SinC = (30·√3/2)/((√6+√2)/4). или
АС = 60/((√6+√2) = 60/(√2(√3+1)) = 30/(√3+1) м.
96 АЕ = ЕК.
Докажите, что прямоугольник ABCD и треугольник AKD равновелики.
ответ : Равновеликими называются фигуры, имеющие равные площади.
Проведем КН⊥EF и рассмотрим треугольники АВЕ и КНЕ : ∠АВЕ = ∠КНЕ = 90°, АЕ = ЕК по условию, ∠АЕВ = ∠КЕН как вертикальные, ⇒ ΔАВЕ = ΔΔКНЕ по гипотенузе и острому углу.
Из равенства треугольников следует, что КН = АВ.
АВ = CD, значит КН = CD.
Рассмотрим треугольники KHF и DCF : ∠KHF = ∠DCF = 90°, KH = CD, ∠KFH = ∠DFC как вертикальные, значит ΔKHF = ΔDCF по катету и противолежащему острому углу.
Итак, Sabe = Skhe - зеленые треугольники, Skhf = Sdcf - желтые треугольники.
Площадь прямоугольника состоит из площади голубой трапеции, площади зеленого треугольника и площади желтого треугольника.
Из площадей таких же фигур состоит и площадь треугольника AKD, значитSabcd = Sakd.
Или можно записать все это в обозначениях : Sabcd = Saefd + Sabe + SdcfSakd = Saefd + Skeh + SkfhSabe = Skeh, Sdcf = Skfh, ⇒ Sabcd = Sakb.
Объяснение:
вот сам писал
Объяснение:
x•3+6•(-2)=0
x•3-12=0
x=4