Можно и с рисунком. Касательные к окружности, проведённые из одной точки, равны. Обозначим равные отрезки как показано на рисунке через x, y и z. AB=x+z, AC=x+y. По теореме биссектрис АС/АВ=СД/ВД, (x+y)/(x+z)=y/z, xz+yz=xy+yz, xz=xy, z=y. СД/ВД=у/z=1, значит АС/АВ=1, значит АВ=АС. Треугольник АВС - равнобедренный, в нём АД - высота и биссектриса, центр вписанной окружности лежит на биссектрисе, вписанная окружность касается стороны ВС в точке Д, но это не значит, что АВ=ВС. Это равенство может быть только если тр-ник АВС правильный, но это лишь частный случай. Не доказано.
В равнобедренном треугольнике АВС с основанием АС, ВН - высота. Найдите ВН, если периметр треугольника АВС равен 48 см,
а периметр треугольника ВНС равен 32 см.
ответ или решение1
Так как треугольник ABC равнобедренный и его периметр равен 48, значит AB = BC, а AC = 48 - 2BC.
Высота BH делит AC пополам, соответственно, AH = HC = (48 - 2BC) / 2.
Площадь треугольника BHC равен 32 см.
Составляем уравнение:
BC + (48 - 2BC) / 2 + BH = 32;
Решаем уравнение:
2BC / 2 + (48 - 2BC) / 2 + BH = 32;
(2BC + 48 - 2BC) / 2 + BH = 32;
48 / 2+BH = 32;
24 + BH = 32;
BH = 32-24;
BH = 8
ответ: длина высоты BH равна 8 см
Объяснение: