Пирамида, в основании равносторонний треугольник АВС, ВН-высота треугольника, точка О центр - пересечение высот(медиан биссектрис), ОК-высота пирамиды, КН-апофема, АН-ребро=6, tg углаКНО=2*корень11, ОК=ОН*tgКНО=ОН*2*корень11, проводим высоту АМ, треугольник АКО - ОК=корень(АК в квадрате-АО в квадрате)=корень(36-АО в квадрате), треугольникАОН, уголОАН=60/2=30, АО=2*ОН
ОН*2*корень11 = корень(36-4*ОН в квадрате), две части в квадрат
44*ОН в квадрате=36 - 4*ОН в квадрате, 48*ОН в квадрате=36, ОН=корень3/2
Объёмы пропорциональны кубу коэффициента подобия.Пусть объем всей пирамиды равен V.
Высота поделена на три равные части. Отношение высоты самой маленькой пирамиды к самой большой - 1:3. Тогда отношение их объёмов - 1:27. Если вся большая пирамида имеет объем V, то её маленькая пирамида имеет объём V/27 . Теперь возьмём пирамиду побольше - с той же вершиной, но с высотой 2/3 от всей высоты. Её высота в два раза больше чем у пирамиды-верхушечки, Объём этой "средней пирамиды" будет равен 8V/27. Тогда обем средней части равен 8V/27-V/27=7V/27 Объем самой большой части равен V-8V/27=19V/27. Отношение объемов будет V/27:7V/27:19V/27=1:7:19
Пирамида, в основании равносторонний треугольник АВС, ВН-высота треугольника, точка О центр - пересечение высот(медиан биссектрис), ОК-высота пирамиды, КН-апофема, АН-ребро=6, tg углаКНО=2*корень11, ОК=ОН*tgКНО=ОН*2*корень11, проводим высоту АМ, треугольник АКО - ОК=корень(АК в квадрате-АО в квадрате)=корень(36-АО в квадрате), треугольникАОН, уголОАН=60/2=30, АО=2*ОН
ОН*2*корень11 = корень(36-4*ОН в квадрате), две части в квадрат
44*ОН в квадрате=36 - 4*ОН в квадрате, 48*ОН в квадрате=36, ОН=корень3/2
ВН=ОН*3=корень3*3/2=3*корень3/2, АС=2*ВН*корень3/3 = 2*корень3*корень3/3*2=1