трапеция;
∠DAC = 63˚;
∠ACJ = 27˚;
D₂K = 10;
IJ = 12.
D₂К соединяет середины отрезков DE и AC.
IJ соединяет середины отрезков AD и EC.
Найти:(AC * DE) * 1/2 = ?
Решение:Пусть дана произвольная трапеция ADEC, где AC - большее основание (сумма углов при большем из оснований 63° + 27° = 90°), а DE - меньшее соответственно.
Продлим боковые стороны нашей произвольной трапеции до их пересечения. Обозначим пересечение точкой В.
Нетрудно заметить, что △ABC - прямоугольный (поскольку можно увидеть, что ∠DAC + ∠ACJ = 63˚ + 27° = 90° - сумма острых углов в прямоугольном треугольнике => ∠АВС прямой и равен 90°).
Обозначим середину большего из оснований произвольной трапеции, допустим, точкой К. Тогда из свойства, мы можем утверждать, что ВК - медиана прямоугольного △ABC.
Мы знаем, что медиана всегда делит отрезок, параллельный тому, к которому проведена медиана, на два равных, т.е. в данной ситуации она оба основания нашей трапеции делит пополам так, что AK = KC и DD₂ = D₂E.
Исходя из этих объяснений, запишем формулу для серединного отрезка к противоположным сторонам трапеции IJ.
IJ = 1/2 * (AC + DE).
D₂K = ВК - ВD₂. Известно, что ВК и ВD₂ медианы, проведённые из вершины прямого угла, которые по свойству медианы прямоугольного треугольника равны половине гипотенузы. То есть BK = AC * 1/2 (по свойству), соответственно BD₂ = DE * 1/2, откуда D₂K = 1/2 * (AC - DE).
Исходя из этого, мы можем сказать, что:
AC = D₂K + IJ = 10 + 12 = 22; DE = IJ - D₂K = 12 - 10 = 2.
Теперь остается найти полупроизведение этих оснований.
(AC * DE) * 1/2 = (22 * 2) * 1/2 = 44 * 1/2 = 44/2 = 22.
ответ: (AC * DE) * 1/2 = 22.Задание №1
Объяснение:
Пирамида SABCD. Апофема SH - высота треугольника SAB. O - точка пересечения диагоналей основания, SO - высота пирамиды.
1) Рассмотрим прямоугольный треугольник OHS. По теореме пифагора:
OH² = SH² - SO²
OH² = 4a² - 3a²
OH = a
По теореме Фалеса: BC = 2OH = 2a
Сторона основания 2a
2) SHO - линейный угол двугранного угла SABO. Найдя его, найдем и SABO, следовательно угол между боковой гранью и основанием.
Из прямоугольного треугольника SHO:
sin<SHO = SO/SH
sin<SHO = a√3/2a = √3/2
<SHO = 60°
Угол между боковой гранью и основанием 60°
3) S = Sбок + Sосн
В основании квадрат, значит Sосн = AB² = (2a)² = 4a²
Sбок = Pосн*SH/2
Pосн = 4*2a = 8a
Sбок = 8a*2a/2 = 8a²
S = 8a² + 4a² = 12a²
Площадь 12а²
4) Из точки О (это и есть центр основания) проводим перпендикуляр к апофеме SH, обозначаем H1. SH1 - расстояние от центра основания до плоскости боковой грани.
Из прямоугольного треугольника OH1H:
sin<SHO = OH1/OH
но sin<SHO = √3/2
√3/2 = OH1/a
OH1 = a√3/2
ответы: a; 60°; 12а²; a√3/2