М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Дженнет2001
Дженнет2001
29.04.2020 16:46 •  Геометрия

Знайдіть кути і сторони правильного восьмикутника, якщо його периметр 28 см.

👇
Ответ:
hdhhxhd662
hdhhxhd662
29.04.2020
ответ:
3,5cм сторона восьмиугольника
135° угол восьмиугольника

Решение:
Р=8а, где а-сторона восьмиугольника.
а=Р/8=28/8=3,5см сторона восьмиугольника.
Формула нахождения угла правильного n-угольника.
180°(n-2)/n, где n=8, количество углов многоугольника.
180(8-2)/8=180*6/8=135°
4,8(58 оценок)
Открыть все ответы
Ответ:
marusya11102345
marusya11102345
29.04.2020
А и b - основания, a>b, h и с - боковые стороны, h<c, R=9, S=432.
b=?

Высота трапеции равна диаметру окружности. h=2R=18.
Площадь трапеции S=h(a+b)/2 ⇒ (a+b)=2S/h=2·432/18=48.
B описанной трапеции h+с=a+b ⇒ с=a+b-c=48-18=30.
Опустим высоту на большее основание из тупого угла трапеции. Она разбивает это основание на два отрезка, один из которых равен меньшему основанию, а другой (х) образует прямоугольный треугольник вместе с наклонной боковой стороной и высотой.
х²=с²-h²=30²-18²=576,
x=24.
a=b+x=b+24.

a+b=48,
b+24+b=48,
2b=24,
b=12 - это ответ.
4,5(4 оценок)
Ответ:
RedBalloon
RedBalloon
29.04.2020
Для решения этой задачи нам придется вывести кое-какие формулы для площади треугольника.

1. S=Rr(sin A+sin B+sin C).

В самом деле, S=pr=r(a+b+c)/2=
r(Rsin A+Rsin B+Rsin C) по теореме синусов.

2. S=4Rrcos(A/2)·cos(B/2)·cos(C/2).

Преобразуем: 
sin A+sin B+sin C=2sin(A+B)/2·cos(A-B)/2+sin(180-A-B)=
2sin(A+B)/2·cos(A-B)/2+2sin(A+B)/2·cos(A+B)/2=
2sin(A+B)/2·(cos(A-B)/2+cos(A+B)/2)=
4sin(180-C)/2·cos(A-B+A+B)/4·cos(A-B-A-B)/4=
4cos (C/2)·cos(A/2)·cos(B/2).

По этой формуле мы запишем площадь треугольника ABC.

Переходим к площади треугольника XYZ. Нам понадобится еще одна формула.

3. S_(XYZ)=2R^2sin X·sin Y·sin Z.

Имеем: S=(xyz)/(4R)=(2Rsin X)(2Rsin Y)(2Rsin Z)/(4R) = то, что надо.

Заметим, что R общее для обоих треугольников, и что углы
X=(B+C)/2; Y=(A+C)/2; Z=(A+B)/2⇒

S_(XYZ)=2R^2sin(B+C)/2·sin(A+C)/2·sin(A+B)/2=
2R^2sin(180-A)/2·sin(180-B)/2·sin(180-C)/2=
2R^2cos(A/2)cos(B/2)cos(C/2).

Поэтому S_(ABC)/S_(XYZ)=(4Rr)/(2R^2)=(2r)/R

ответ: 39/50
4,6(47 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ