Медиана трегольника может быть равна или больше высоты, но никогда - меньше. Равной она бывает в равнобедренном или равностороннем треугольнике.
Перпендикуляр, проведённый из какой-нибудь точки к прямой, меньше всякой наклонной, проведённой из той же точки к этой прямой.
В данном случае этой точкой являетя вершина, из которой проведены медиана и высота.
Если медиана проведена не в равнобедренном треугольнике, она наклонна к стороне, к которой проведена. Высота перпендикулярна к основанию, а медиана наклонна. С высотой она составляет прямоугольный треугольник и является в нем гипотенузой, а гипотенуза всегда больше катета.
S=√(p(p-a)(p-b)(p-c)),
где р - полупериметр
а, b и c - стороны треугольника
p=(26+28+30):2=42 см.
S=√(42*16*14*12) = √(2*3*7*4*4*2*7*4*3) = 336 см²