4. В равнобедренном треугольнике боковая сторона равна 10 см, основание равно 16 см. Найдите радиус вписанной в этот треугольник и радиус описанной около этого треугольника окружности.
Чтобы найти радиус вписанной окружности, нужно воспользоваться формулой площади: S=pr, где r-радиус вписанной окр., p-полупериметр. Отсюда r=S/p. p=(10+10+12)/2=16см. Площадь треугольника можем выразить с другой формулы: S=a*h/2. a=12, h= кор100-(12/2)²=кор100-36=8 см. S= 12*8/2=48 см². r=48/16=3 см
Площадь треугольника АСD по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны. В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14. S=(1/2)*h*AD, отсюда высота треугольника АСD равна h=2S/AD=(2√14)/3. Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3. Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3. По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1. ответ: S=26√14/9 ≈ 12,1.
АВСА1В1С1 - усечённая пирамида. Предложенное сечение - трапеция с основаниями, равными высотам, проведённым в основаниях пирамиды. АМ - высота в тр-ке АВС, ВМ=МС. А1М1 - высота в тр-ке А1В1С1 В1М1=С1М1. Высота в прямоугольном тр-ке вычисляется по ф-ле h=а√3/2 АМ=8√3·√3/2=12. А1М1=4√3·√3/2=6. АММ1А1 - трапеция. Её площадь: S=(a+b)h/2=(АМ+А1М1)h/2 ⇒ h=2S/(АМ+А1М1)=2·54/(12+6)=6. Площадь правильного тр-ка: S=a²√3/4. S1=(8√3)²·√3/4=48√3. S2=(4√3)²·√3/4=12√3. Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3 V=6(48√3+√(48√3·12√3)+12√3)/3=2(48√3+24√3+12√3)=168√3.
Чтобы найти радиус вписанной окружности, нужно воспользоваться формулой площади: S=pr, где r-радиус вписанной окр., p-полупериметр. Отсюда r=S/p. p=(10+10+12)/2=16см. Площадь треугольника можем выразить с другой формулы: S=a*h/2. a=12, h= кор100-(12/2)²=кор100-36=8 см. S= 12*8/2=48 см². r=48/16=3 см
Для нахождения радиуса описанной окружности воспользуемся доугой формулой: S=abc/4R. R=abc/4S=10*10*12/4*48= 6,25cм.
ответ: r=3см, R=6.25cм