плоскость ребристого треугольника, ребра которого равны 8√3 см, соприкасается с плоскостью шара в точке, где центр треугольника.если расстояние от центра шара до стенки треугольника равно 5 см, то найди радиус шара
Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 2 : 3, считая от вершины угла при основании треугольника. Найдите основание треугольника, если его боковая сторона равна 15 см
Объяснение:
ΔАВС, АВ=ВС=15 см, К, Р, М-точки касания окружности сторон АВ,ВС,АС соответственно,АК/КВ=2/3. Найти АС.
Отрезок АВ , по условию , состоит из 5 частей или 15 см⇒
1 часть равна 3 см. Тогда АК=6см .
Т.к. АВ=ВС, то СР/РВ=2/3.
По свойству отрезков касательных , проведенных из одной точки :
Любая геометрическая задача сводится к рассмотрению треугольника, либо пары треугольников, так вот: рассмотрим треугольник АСB, он равнобедренный, т.к., угол С = 90*, а угол А = 45*, чтобы найти угол B= 180-(90+45) = 45*, углы при основании равны, треугольник равнобедренный по 1 свойству. Так же мы знаем, что в равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой, по 4 свойству, соответственно, медиана - это линия, которая проведена из вершины к середине противоположной стороны. Зная длину стороны АB = 4, мы можем вычислить AB=AH+HB, 4=2+2, значит отрезок HB=2 см. Зная, что от является катетом равнобедренного треугольника, по 1 свойству, т.к., у нас имеется угол в 90* и один угол в 45*, значит угол B=45*, мы получаем, что CH=HB=2см.
ВОТ
Объяснение:
Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 2 : 3, считая от вершины угла при основании треугольника. Найдите основание треугольника, если его боковая сторона равна 15 см
Объяснение:
ΔАВС, АВ=ВС=15 см, К, Р, М-точки касания окружности сторон АВ,ВС,АС соответственно,АК/КВ=2/3. Найти АС.
Отрезок АВ , по условию , состоит из 5 частей или 15 см⇒
1 часть равна 3 см. Тогда АК=6см .
Т.к. АВ=ВС, то СР/РВ=2/3.
По свойству отрезков касательных , проведенных из одной точки :
АК=АМ=6 см, МС=СР=6 см ⇒ АС=АМ+МС=6+6=12(см
Подробнее - на -