просто приравниваете
k*x = x^2 + 4;
x^2 - k*x + 4 = 0;
Если это квадратное уравнение имеет ровно один корень, то это как раз то что надо.
А один корень тогда, когда это полный квадрат. То есть к = 4 или -4.
В самом деле, это можно и так записать -
(x - k/2)^2 = k^2/4 - 4; и полный квадрат получается, если правая часть равна нулю, то есть k^2 = 16;
Например, прямая y = 4*x в точке x= 2 равна 8, и x^2 + 4 = 8; больше нет общих точек. То же самое y = -4*x в точке x= -2 равна 8, и x^2 + 4 = 8;
1. Апофема равна (a/2)/cos(60) = a = 6. Значит у боковой грани основание и высота равны a = 6.
Поэтому ребро равно корень(a^2 + (a/2)^2) = a*корень(5)/2 = 3*корень(5);
2. Проведем в основании высоту к стороне 12. получится 2 равных прямоугольных треугольника с гипотенузой 10, катетом 6 и вторым катетом 8 (опять 3,4,5).
Отсюда площадь основания 12*8/2 = 48; периметр 22, радиус вписанной окружности
r= 2*S/P = 96/22 = 48/11.
апофема равна h = r/cos(45) = (48/11)*корень(2);
площадь боковой поверхности P*h/2 = 48*корень(2)
Площадь полной поверхности 48*(1+корень(2))