Длины сторон треугольника должны удовлетворять неравенству треугольника: сумма любых двух сторон больше третьей стороны.
а) 2 + 8 = 10 (см), 10 см < 13 см - построить треугольник нельзя
б) 0,5 м + 0,5 м = 1 м - построить треугольник нельзя.
№2
а)1:2:3 нет, потому что неравенства
триугольника
пусть 1 часть х
х<2х+3х правильно
2х<х+3х правильно
3х<х+2х неправильно
б)2:3:6 нет
2х<3х+6х правильно
3х<2х+6х правильно
6х<3х+2х не правильно
в)1:1:2 нет
х<х+2х правильно
х<х+2х правильно
2х<х+х не правильно
Достаточное условие: сумма двух меньших сторон больше большей стороны треугольника
№3
а) Раасмотрим 2 случая.
1) 6см, 3см, 3 см
6<3+3
6<6 - неверно, значит такой треугольник не существует
2) 6см, 6см, 3 см
6<6+3
6<9 - верно, значит 3 сторона = 6см
б) 8см, 2см, 2см
8<2+2
8<4 - неверно
8см, 8см, 2см
8<8+2
8<10 - верно
3 сторона = 8см
№4
Тут есть 2 варианта любое переписывай
Вар 1
Дан р/б треугольник. Пусть равные стороны по 12 см, а основание 5 см.
12*2 + 5 = 24+5 = 29 см - периметр данного треугольник
Вар 2
Дан р/б треугольник. Пусть равные стороны по 5 см, основание 12 см
Тогда получается, что сумма двух сторон треугольника меньше третьей стороны, т. е. 12 >5+5, чего не может быть согласно неравенству треугольника (каждая сторона треугольника должна быть меньше суммы двух других сторон)
Если достаточно координат концов лучей звезды, то такая задача аналогична задаче поворота отрезка вокруг точки на заданный угол. Для пятиконечной звезды угол равен 72 градуса. Поместим центр окружности, в которую вписана звезда, в начало координат. Пусть обозначим её точкой А (0;0). Верхняя вершина звезды - точка В (0; R) - R задаётся координатой "у" точки В. Далее по формулам (против часовой стрелки с плюсом, против - с минусом) указываем угол поворота. X = x1+(x2-x1)*cos(A)-(y2-y1)*sin(A). Y = y1+(x2-x1)*sin(A)+(y2-y1)*cos(A).
№1
Длины сторон треугольника должны удовлетворять неравенству треугольника: сумма любых двух сторон больше третьей стороны.
а) 2 + 8 = 10 (см), 10 см < 13 см - построить треугольник нельзя
б) 0,5 м + 0,5 м = 1 м - построить треугольник нельзя.
№2
а)1:2:3 нет, потому что неравенства
триугольника
пусть 1 часть х
х<2х+3х правильно
2х<х+3х правильно
3х<х+2х неправильно
б)2:3:6 нет
2х<3х+6х правильно
3х<2х+6х правильно
6х<3х+2х не правильно
в)1:1:2 нет
х<х+2х правильно
х<х+2х правильно
2х<х+х не правильно
Достаточное условие: сумма двух меньших сторон больше большей стороны треугольника
№3
а) Раасмотрим 2 случая.
1) 6см, 3см, 3 см
6<3+3
6<6 - неверно, значит такой треугольник не существует
2) 6см, 6см, 3 см
6<6+3
6<9 - верно, значит 3 сторона = 6см
б) 8см, 2см, 2см
8<2+2
8<4 - неверно
8см, 8см, 2см
8<8+2
8<10 - верно
3 сторона = 8см
№4
Тут есть 2 варианта любое переписывай
Вар 1
Дан р/б треугольник. Пусть равные стороны по 12 см, а основание 5 см.
12*2 + 5 = 24+5 = 29 см - периметр данного треугольник
Вар 2
Дан р/б треугольник. Пусть равные стороны по 5 см, основание 12 см
Тогда получается, что сумма двух сторон треугольника меньше третьей стороны, т. е. 12 >5+5, чего не может быть согласно неравенству треугольника (каждая сторона треугольника должна быть меньше суммы двух других сторон)
Этот вариант невозможен.
ответ: периметр 29 см
Хх все