Объяснение:
"2. Один из углов, образованных при пересечении двух прямых, равен 63°. Найдите градусные меры остальных углов.
3. Один из смежных углов на 52° больше второго. Найдите эти углы.
4. На рисунке 265 AB =CD, А В C D E AC = CE. Докажите, что Рис. 265 BC = DE.
5. Углы АВС и свD смежные, луч Вм — биссектриса угла ABC Kyr ABM в 2 раза больший угол свD. Найдите углы ABC i CBD. Точки A, Bi слежат на одной прямой, AB = 15 см, отрезок Ас в 4 раза больше отрезка вс. Найдите отрезок АС. ответ: Объяснение: "2. Один из углов, образованных при пересечении двух прямых, равен 63°. Найдите градусные меры остальных углов. 3. Один из смежных угл"
2) При пересечении двух прямых образуются четыре угла: два смежных и два накрест лежащих.
Сумма смежных равна 180*, а накрест лежащие равны между собой.
Поэтому смежные углы: 180*-63*=117*, а вертикальные равны данным углам: один равен 63*, а другой - 117*
3) Пусть один из смежных углов равен х*. Тогда второй равен х+52*. Их сумма равна 180*.
х+х+52*=180*.
2х=128*.
х=64*. - меньший угол
Больший угол равен 64*+52=116*.
ответ: 64* и 116*.
4) Извините, но рисунка не наблюдаю... ???
5)
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.