Пирамида ABCDE, ABCD - основание, AED - грань, перпендикулярная плоскости основания. Проведем высоту EK к ребру AD. Она у нас по условию равна 6. Ещё проведем высоту EM к грани BC. Поскольку плоскость AED перпендикулярна плоскости основания, а все остальные грани наклонены к ней под одинаковым углом, то углы EDA=EAD=EMK = 60 градусов, и прямоугольные треугольники AEK, DEK и MEK равны. Из этих треугольников найдем сразу всё, чего нам не хватает: KM = KD = KA = EK/tg(60гр) = 6/√3. Площадь ABCD = KM*(AK+KD) = 2*(6/√3)^2 = 24. Объем пирамиды равен 1/3*24*6 = 48
1.P=2(a+b), пусть а=х, тогда 30=2х+8х 30=10х х=3, первая сторона 4*3=12м, вторая сторона ответ: 3см, 3см, 12см, 12см 3.Биссектриса угла А отсекает от прямоугольника равнобедренный треугольник АВЕ. Значит АВ=ВЕ=7см, ВС=7+3=10см. Периметр равен 2*(7+10)=34см. ответ: периметр = 34см 4.Меньшая диагональ АС=24см Угол А=60° Меньшая диагональ делит ромб на 2 треугольника: АВС и АСD Так как угол А= углу D= 60° , то треугольники равносторонние и сторона ромба =24 см 5.Периметр= 4а а=46:4=11,5см Площадь= а^2=11,5×11,5=132,25см^2