Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
ответ:
объяснение:
дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. прямі, які не лежать в одній площині, називаються мимобіжними. зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. наприклад, паралельні прямі a і b лежать у різних площинах і (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас. image8756image 167 fmt.jpeg
для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас. 1.jpeg
можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині. теорема. через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.