1)так как одна из сторон треугольника - диаметр описанной окружности, то этот треугольник прямоугольный.меньвая высота в нем проведена к гипотенузе. её квадрат равен произведпению отрезков, на которые делит основание высоты гипотенузу, т.е. 16·9=144, а высота тогда равна 12. меньшую сторону находим из прямоугольного треугольника, стороны которого равны 12 и 9. она является в треугольнике гипотенузой, и поэтому её квадрат равен 144+81=225, а сторона равна 15 . это ответ - 15. 2) сторона ромба равна меньшей диагонали, значит, углы в этом ромбе:60, 120,60 и 120градусов. треугольникАВС, образованный меньшей диагональю и сторонами ромба, равносторонний. его площадь равна 0,5·4·4·√3:2=4√3, площадь треугольника АОВ=0,5 площади АВС, т.е. 2√3. С другой стороны, площадь треугольника АОВ=0,5·4· r.=2r. Тогда r=√3, а площадь вписаннонго круга = π· r² =3π
Номер 1 Рассмотрим треугольник AOC и треугольник BOD: угол AOC равен углу BOD(как вертикальные) AO=OB и CO=OD(по условию,т.к. точка серединой является O) значит треугольник AOC равен треугольнику BOD(по двум сторонам и углу между ними) значит угол DAO равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
номер 2: Рассмотрим треугольник ABD и треугольник ADC: по условию угол BDA равен углу ADC сторона AD-общая и по условию угол BAD=углу DAC(т.к. AD биссектриса) Значит треугольник ABD равен треугольнику ADC(по двум углам и стороне между ними) значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
2) сторона ромба равна меньшей диагонали, значит, углы в этом ромбе:60, 120,60 и 120градусов. треугольникАВС, образованный меньшей диагональю и сторонами ромба, равносторонний. его площадь равна 0,5·4·4·√3:2=4√3, площадь треугольника АОВ=0,5 площади АВС, т.е. 2√3. С другой стороны, площадь треугольника АОВ=0,5·4· r.=2r. Тогда r=√3, а площадь вписаннонго круга = π· r² =3π