М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ПолинаSweet11
ПолинаSweet11
07.03.2023 16:24 •  Геометрия

Напишите уравнение окружнасти с центром в точке А(5;-4) и радиусом равным 3

👇
Ответ:
vbnioo
vbnioo
07.03.2023

решение смотри на фотографии


Напишите уравнение окружнасти с центром в точке А(5;-4) и радиусом равным 3
4,8(70 оценок)
Открыть все ответы
Ответ:
kolodenkoa444
kolodenkoa444
07.03.2023
На чертеже точки касания N и N1 изображены совпадающими, но это еще надо доказать. Поэтому СНАЧАЛА я не считаю их совпадающими. То есть окружность O1 касается AC в точке N, а окружность O2 - в точке N1 (слова "с центром" дальше буду опускать, если и так ясно).
Для треугольника ABC точки касания с O1 делят стороны на три отрезка AN, CN и еще один (точнее, два равных) из вершины B. Я обозначу его например буквой x.
Тогда очевидно
AN + CN = AC;
AN + x = AB;
CN + x = BC;
Если вычесть из второго третье, получится AN - CN = AB - BC; если теперь сложить это с первым, то 
AN = (AC + AB - BC)/2;
Точно так же для треугольника ACD получается 
AN1 = (AC + AD - CD)/2; и нигде не предполагается, что AN = AN1; это надо доказать.
Весь четырехугольник ABCD является ОПИСАННЫМ, то есть AD + BC = AB + CD;
или AD - CD = AB - BC; или AC + AD - CD = AC + AB - BC; то есть AN = AN1, и точки N и N1 совпадают, это просто одна точка N. 
Последствия этого очень велики. :) Окружности O1 и O2 касаются, AC является общей касательной, проведенной в точке касания N окружностей O1 и O2, и линия центров O1O2 перпендикулярна AC. 
Важно! - пока нигде не использовано, что ABCD - трапеция! Этот результат справедлив для любого выпуклого описанного четырехугольника.
Поэтому (см. чертеж) ∠KO1O2 = ∠CAD (стороны углов перпендикулярны), и треугольники KO1O2 и ACP подобны. CP - высота трапеции. Она равна
CP = 2R = 40; 
сумма радиусов окружностей равна O1O2 = 25; отсюда легко найти KO1 = 40 - 25 = 15; получился "египетский" треугольник :) то есть KO2 = 20;
Ну, и из подобия KO1O2 и ACP AC = 50 (поскольку СP = 2*KO2  :) )
Решить.трапеция abcd описана окло окружности радиуса 20. найти длину диагонали ac трапеции, если рас
4,4(57 оценок)
Ответ:
Мур6954
Мур6954
07.03.2023

Определите периметр прямоугольника,  если его диагональ равна 2√10 м, а площадь 12 м²

Вариант решения (если уже знакомы с теоремой косинусов)

Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм,  можно найти разными в том числе по формуле 

S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними. 

В прямоугольнике диагонали равны, поэтому 

S=0,5•d²•sin α

12=0,5•(2√10)²•sin α⇒

sin α=2S:d²=24: 40=0,6

sin²α+cos²α=1⇒

cos α=√(1-0,36)=0,8 

Теорема косинусов. 

Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними

Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.

Пусть данный прямоугольник АВСД, и О – точка пересечения  его диагоналей.

АВ²=ВО²+АО²-2•BO•AO•cos α

В прямоугольнике  диагонали  равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒

Тогда

  AB²=10+10-2•(√10)•(√10)•0,8⇒

АВ²=4

АВ=СД=2 м

Из другой формулы площади прямоугольника

  S=a•b найдем вторую сторону:

S=АД•AB

12=АД•2

ВС=АД=12:2=6 м

Р=2(AB+BC)=16 м


Определите периметр прямоугольника если его диагональ равна 2корня из10 м, а площадь 12 м2
4,6(37 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ