1)Сумма сторон параллелограмма равна 12 см, значит если первую сторону обозначить как а см, то вторая сторона будет равна (12-а) см.
Известно, что а:(12-а)=3:2
2а=3(12-а)
2а=36-3а
5а=36
а=7,2(см)-одна сторона
12-а=12-7,2=4,8(см)-вторая сторона
ответ: 7,2 см и 4,8 см
2)Найдём углы параллелограмма АВСД.
Известно, что угол А=42 град, значит угол С =42 град (как противоположный угол параллелограмма).
Аналогично, Угол В=углу Д(как противоположный угол параллелограмма).
Углы А и В -внутренние односторонние при двух параллельных прямых и секущей, значит угол В=180-угол А
Угол В=угол Д=180-42=138(град)
ответ: 42, 138, 42, 138
1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°
Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:
\alpha=\frac{180(n-2)}{n}
Найдем при каком n угол будет равен 160°:
160=\frac{180(n-2)}{n}\\160n=180n-360\\20n=360\\n=18
Т.е. угол в 160° будет у правильного 18-угольника
2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:
R=\frac{a}{\sqrt{3}}
Подставим заданное значение стороны:
R=\frac{6\sqrt{3}}{\sqrt{3}}=6
Следовательно, радиус окружности, описанной около этого треугольника равен 6 см
3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:
\frac{8}{15}*360=192°
а радианная:
=\frac{8}{15}*2\pi=\frac{16\pi}{15}
Длину дуги найдем как 8/15 от длины окружности:
l=\frac{8}{15}*2\pi*R=\frac{8}{15}*2\pi*6=6.4\pi\approx20,1 см