Средние линии треугольника находятся втом же отношении, что и стороны треугольника.
Обозначим стороны треугольника буквами а, в и с.
Тогда а:в:с=2:3:4, т.е. а=2х, в=3х, с=4х
По условию, периметр Р=45см, т.е. а+в+с=45
2х+3х+4х=45
9х=45
х=45:9
х=5(см)
а=2х=2*5=10(см)
в=3х=3*5=15(см)
с=4х=4*5=20(см)
ответ:10 см, 15 см, 20 см.
Косинус кута между двумя векторами равен скалярному произведению векторов, деленному на произведение их модулей:
cos(a, b) = (a * b) / (|a| * |b|)
Скалярное произведение векторов равно сумме произведений соответствующих компонент:
a * b = (3m + n) * (m -2n) = 3m^2 - 6mn + mn = 3m^2 - 5mn
Модуль вектора равен квадратному корню из суммы квадратов его компонент:
|a| = sqrt((3m)^2 + n^2) = sqrt(9m^2 + 1)
|b| = sqrt((m)^2 + (-2n)^2) = sqrt(m^2 + 4n^2)
Таким образом, косинус кута между векторами a и b равен:
cos(a, b) = (3m^2 - 5mn) / (sqrt(9m^2 + 1) * sqrt(m^2 + 4n^2))