Постройте сечение куба авсда1в1с1д1 плоскостью, проходящей через точки а, м, н, где точки м и н - середина ребер вв1 и дд1 соответственно. найдите периметр сечения, если ребро куба равно 2 см.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
А1. Дано: ABCD-трапеция ВС=8 см AD=14 см Найти среднюю линию? Решение: Построим отрезок MN-средняя линия трапеции MN=(BC+AD) /2= (8+14)/2= 22/2= 11 см. ответ: 11 см.
А2. Дано: ABCD-трапеция Прямая a || CD ∠ABE = 75°, ∠A = 40°. Чему равен ∠CBE=? Решение: По условию задачи прямая a || CD и проходит основания в точках В и Е => получили треугольник АВЕ, где ∠ABE = 75°, ∠A = 40°. Вычислим ∠AЕВ = 180°-(75°+40°)=180°-115°=65°. Так как ВС || AD и прямая a пересекает их, то прямая а - секущая => ∠AЕВ =∠CBE=65° - внутренние накрест лежащие углы. ответ: ∠CBE=65°