Через вершини в рівнобедреного трикутника АВС (АВ = ВС) проведено пряму ВМ , перпендикулярну до його площини. Обчисліть відстань між прямими ВМ та АС , якщо АВ = 18 см, АС = 24 см.
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. АВ1 - проекция диагонали DB1 призмы на боковую грань АА1В1В. Значит угол АВ1D = α. Тогда сторона основания призмы (квадрата) АD=DB1*Sinα=а*Sinα. Диагональ основания ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α). Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vп=64*(1/4)*√2/2=8√2. Объем описанного цилиндра равен So*h, где So=πR². R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2). Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2. ответ: Vп=8√2. Vц=π*4√2.
Вообще-то есть формула для нахождения радиуса окружности, описанной около равностороннего треугольника.
R = V3/3 * a, где R - радиус описанной окружности, V - знак корня, а - сторона равностороннего треугольника
Но, если хочешь, можно и посчитать. Только чертеж сделай и смотри внимательно.
Дело в том, что в равностороннем треугольнике и высоты, и биссектрисы, и медианы пересекаются в одной точке. И эта точка является центром окружности, описанной около этого треугольника.
Проведи медиану (высоту, биссектрису) из любого угла. Т. е. раздели треугольник пополам. Получился прямоугольный треугольник (высоту ведь опустили) , у которого гипотенуза равна 6 см, а катет равен 3 см (половина, медиана ведь)
По теореме Пифагора находим второй катет . Получим 3V3 (три корня из трех)
А медианы в точке пересечения делятся на отрезки в отношении 2:1. Значит, та часть, которая является радиусом окружности -- это 2V3, а другая часть 1V3
а если бы подставила в формулу, получила бы такой же ответ R= V3/3 *6= 2V3
Не достатньо даних.
Объяснение:
BH- висота, медіана і бісектриса рівнобедреного трикутника ∆АВС, АВ=ВС, за умови.
АН=СН, ВН- медіана.
АН=АС/2=24/2=12см
∆АВН- прямокутний трикутник.
За теоремою Піфагора:
ВН=√(АВ²-АН²=√(18²-12²)=
=√((18-12)(18+12))=√(6*30)=
=√(2*3*2*3*5)=6√5 см.
ВН перпендикулярно АС, тоді МН перпендикулярно АС, за теоремою о трьох перпендикулярах. Необхідно знайти МН.
Далі не стає даних.
Пояснення
∆ВМН- прямокутний трикутник.
За теоремою Піфагора:
МН²=ВМ²+ВН².
Візьмемо за ВМ=х.
МН=√(х²+(6√5)²)=√(х²+180)