Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².
Расстояние от точки М до прямой АВ равно 15 см
Объяснение:
В равностороннем треугольнике ABC проведена биссектриса BM, равная 30см. Найдите расстояние от точки M до прямой AB.
Катет прямоугольного треугольника, лежащий напротив угла в 30°, равен половине гипотенузы.Дано: △АВС, АВ=ВС=АС. ВМ - биссектриса, ВМ=30см, ∠АВМ=∠СВМ. МН⟂АВ.
Найти: МН
РЕШЕНИЕ1) ∠А=∠В=∠С=60°, так как △АВС - равносторонний.
2) ∠АВМ=∠СВМ=∠B : 2 = 60° : 2 = 30° (так как ВМ - биссектриса)
3) ∠ВНМ - прямоугольный, ∠ВНМ=90°. ∠НВМ=30°. МH - катет, лежащий против угла в 30°, следовательно он равен половине гипотенузы ВМ:
МН = ½ • ВМ = ½ • 30 = 15 (см)
ответ: 15 см
#SPJ1