Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°
ответ.∠РМК=60°
В рассказе Михаила Зощенко мальчик Минька учился плохо. Ему трудно давалось учение. А еще ему мешали мальчишки слушать учителя на уроке. Он получил единицу за невыученный урок по литературе и не сказал об этом отцу. Но правда все равно раскрылась. Минька с сестрой придумывали всякие чтобы избежать наказания и обмануть отца. Уж очень хотелось ему получить фотоаппарат на день рождения.
Отец не наказал мальчика. Он понял, как ему было трудно признаться в обмане. Подарок обещанный он мальчику отдал и наказал:
Легко стало Миньке после такого урока отуа. И больше он не врет. так намного спокойнее жить на свете.
Объяснение: