М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lislibert
lislibert
10.02.2021 22:46 •  Геометрия

В прямокутному трикутнику МАТ кут А = 90 АН - висота МТ = 13 МА = 5 знайдіть АН відповідть округліть до десятків

👇
Открыть все ответы
Ответ:
Дано:

правильная треугольная пирамида SABC.

R - середина ребра ВС.

S - вершина.

АВ = 7

SR = 16

Найти:

S поверхности - ?

V - ?

Решение:

Правильный многоугольник - многоугольник, у которого все углы и стороны равны.

Правильная пирамида - пирамида, у которой основание - правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является её высотой.

=> в основании этой правильной треугольной пирамиды лежит равносторонний △АВС.

Рассмотрим △АВС:

АВ = ВС = АС = 7, так как △АВС - равносторонний.

P△АВС = АВ + ВС + АС = 7 + 7 + 7 = 21

Так как △АВС - равносторонний => он ещё и равнобедренный.

BR = RC = 3,5, так как AR - медиана. (Также R - середина ВС, по условию)

Найдём высоту AR в △АВС, по теореме Пифагора:

с² = а² + b²

a = √c² - b²

a = √(7² - 3,5²) = √(49 - (7/2)²) = √(49 - 49/4) = √147/4 = √(147)/2 = 7√(3)/2

Итак, AR = 7√(3)/2

S осн = S △ (в основании)

S осн = S △АВС = 1/2ВС * AR = 1/2 * 7 * 7√(3)/2 = 49√(3)/4 ед.кв.

SR - высота боковой грани, так как SR - апофема.

Апофема - высота боковой грани правильной пирамиды, проведённая из её вершины.

S бок = 1/2Р * SR = 21/2 * 16 = 168 ед.кв.

S поверхности = S осн + S бок = 49√(3)/4 + 168 = 189,21762 ≈ 189 ед.кв.

Точка, на которую опущена высота SO, является серединой правильного треугольника (точка пересечения медиана).Эти медианы делятся в отношении 2:1, считая от вершины.

AR/3 - АО основания AR. (2/3)

=> AR/3 - OR основания AR (1/3)

=> OR = 1/3 * 7√(3)/2 = 7√(3)/6

Рассмотрим △SRO:

△ASO - прямоугольный, так как SO - высота.

Найдём высоту SO, по теореме Пифагора:

с² = а² + b²

a = √(c² - b²)

a = √(16² - (7√(3)/6)²) = √(256 - 49/12) = √(9069)/6

Итак SO = √(9069)/6

V = 1/3S осн * SO

V = 1/3 * 49√(3)/4 * √(9069)/6= 49√(3023)/24 ед.кб.

ответ: ≈ 189 ед.кв.; = 49√(3023)/24 ед.кб.
В правильной треугольной пирамиде SАВС точка R – середина ребра ВС, S – вершина.Известно, что АВ = 7
4,7(97 оценок)
Ответ:
serejafox23
serejafox23
10.02.2021
Если из точки вне окружности к ней проведены касательная и секущая, то квадрат отрезка касательной от этой точки до точки касания равен произведению длин отрезков секущей от этой точки до точек ее пересечения с окружностью. чертеж: нарийсуй окружность, потом, например, слева от окр. точку a, от нее касательную (точку пересеч обозначь b), и из точки a секущую (точки пересечения с окр. обозначь (слева направо) c и d). подпиши над ab: 10-(x+4); над ac: x; cd: x+4; ad: 2x+4. решение: составим уравнение: (10-(x+4))^2=x*(2x+4) (6-x)^2=2x^2+4x; 36-12x+x^2-2x^2-4x=0; x^2+16x-36=0; d=256-4*(-36)=400; корень из d = 20; x = (-16+20)/2=2; 10-(x+4)=6-x=4. ответ: длина касательной 4 см.
4,8(48 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ