Этого построения самого по себе маловато, если продлить АН до пересечения с описанной окружностью в точке Е, и построить еще точку Е' аналогично точке А', то есть построить вписанный прямоугольник АЕЕ'А', то угол ОАН - это угол Е'АЕ, равный углу АЕ'A', который опирается на дугу АА', равную разности дуг CА' и CA (в предположении, что угол С больше угла В, что не существенно). Поскольку дуга СА' очевидно равна дуге ВА (точнее, сразу видно, что равны заключенные между параллельными хордами АА' и ВС дуги ВА' и АС, а отсюда уже следует равенство дуг СА' и ВА), то вписанный угол АЕ'A' равен разности углов С и В, опирающихся на соответствующие дуги. Всё доказано.
1)нет не может быть параллельной плоскости бета 2)да может пересекать плоскость бета 3)нет не может лежать в плоскости бета оъяснение: естественно. эти прямые пересекаются. поскольку прямая а лежит в плоскости альфа, она не может пересечься с плоскостью бета в точке, не лежащей в плоскости альфа. следовательно, прямая а проходит через точку, лежащую одновременно в плоскостях альфа и бета. а такие точки образуют прямую с. следовательно, прямая а имеет общую точку с прямой с, причём единственную (поскольку она пересекается с плоскостью бета, то имеет с ней единственную общую точку). следовательно, эти прямые пересекаются.
Поскольку дуга СА' очевидно равна дуге ВА (точнее, сразу видно, что равны заключенные между параллельными хордами АА' и ВС дуги ВА' и АС, а отсюда уже следует равенство дуг СА' и ВА), то вписанный угол АЕ'A' равен разности углов С и В, опирающихся на соответствующие дуги.
Всё доказано.