Обозначим (начиная с нижнего левого острого угла) по часовой стрелке ABCD.
Тогда AD = 12 см и AB=8 см
Высоты из угла В - на AD - BE и на CD - BF
<EBF = 60
BE - высота, т. е. BE перпендикулярно AD, значит BD перпендикулярно и BC, т.к.
BC параллельно AD, следовательно, < CBE - прямой и <CBF =90 - <EBF =90-60 =30
BF - высота, она перпендикулярна CD, т.е. треугольник BFC - прямоугольный, значит
<BCF = 90 - <CBF = 90 -30 =60
Но <A = < C, значит <A =60 и можем найти высоту BE из треугольника AEB
BE=AB* cos <A
BE = 8*cos 60 = 8* корень(3)/2 = 4*корень(3)
площадь параллелограмма равна произведению основания на высоту
S = AD*BE = 12*4*корень(3) = 48 * корень(3) кв. см
сорок восемь умножить на корень из трех
А(18√3; 18)
Пошаговое объяснение:
Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
Итак, запишем координаты точки А: А(18√3; 18)
Объяснение: