Решение умных людей ) не мое , но все же 1. строим тр-к авс с углами альфа (вершина а) и бета (вершина с) при основании. 2. строим биссектрисы углов а и с. 3. радиусом св с центром в точке с проводим полуокружность с пересечением стороны ас в точке d. дугу dв откладываем вправо от точки в и еще откладываем половину дуги угла бета. получили точку м. угол dсм равен 2,5 бета. 4. радиусом сm, с центром в т. а проводим дугу угла альфа. 5. измеряем дугу половины угла альфа. 6. эту дугу откладываем по дуге угла мсb от точки м в сторону точки в. получили точку n. 7. угол acn = 2,5 бета - 0,5 альфа.
Начнём с конца. Перпендикуляр из точки В на плоскость АСМ - это катет треугольника ВС. Его можно найти, зная длину другого катета (АС = 18) и угол А = 30 градусов. Его синус = 1/2, косинус = √3/2, а значит стороны треугольника: АВ = AC/cosA = 18/(√3/2) = 36/√3 ВС = sinA*AB = 1/2 * (36/√3) = 18/√3 Второе требуемое мы нашли. Теперь к первому. Пусть перпендикуляр из точки М к прямой АВ попадает на эту прямую в точке Н. Тогда СН - это высота треугольника АВС (по мне очевидно, но если надо, можно доказать). Найдём СН. Для этого рассмотрим получившийся прямоугольный треугольник АСН, в нём АС - это гипотенуза, значит: СН = AC*sinA = 18 * 1/2 = 9 Теперь рассмотрим треугольник МСН. Он тоже прямоугольный и нам надо найти его гипотенузу: МН² = СМ² + СН² = 12² + 9² = 144 + 81 = 225 = 15² МН = 15 Вот собственно и всё. Не забывайте про единицы измерения, как я, и спрашивайте, если непонятно.
1)Обозначим сторону основания призмы а, а высоту призмы h. Найдем площадь основания призмы Sосн=1/2*a*a*sin (π/3)=1/2a²*√3/2=a²√3/4;
2)Вычислим объем призмы V=Sосн*h=a²h√3/4⇒a²h=4V/√3;
3)найдем радиус цилиндра. по теореме синусов:a/(sinπ/3)=2R⇒a/(√3/2)=2R⇒R=a/√3;
4)Найдем объём цилиндра по формуле πR²h=π(a/√3)²h=πa²h/3. Подставим туда a²h=4V/√3, получим объём цилиндра π*(4V/√3)/3=4πV/(3√3).