Во втором случае точки
В, С и Д не лежат на одной
прямой.
Объяснение:
1.
ВС=18см
ВД=10см
СД=8см
ВС=ВД+СД=10+8=18(см)
18=18 верно.
Вывод: точка Д лежит между
точками В и С.
2.
ВС=20см
ВД=12см
СД=10см
а) ВС=ВД+СД=12+10=22(см)
20=22 неверно.
Точка Д не лежит между точка
ми В и С.
б) ВД=ВС+СД=20+10=30(см)
12=30 неверно.
Точка С не лежит между точка
ми В и Д.
в) СД=ВС+ВД=20+12=32(см)
10=32 неверно.
Точка В не лежит между точка
ми С и Д.
Вывод: точки В, С и Д не лежат
на одной прямой.
3.
ВС=19см
ВД=6см
СД=25см
СД=ВС+ВД=19+6=25(см)
25=25 верно.
Вывод: точка В лежит между
точками С и Д.
4.
ВС=17см
ВД=24см
СД=7см
ВД=ВС+СД=17+7=24
24=24 верно.
Вывод: точка С лежит между
точками В и Д.
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²