Ищем периметр известного треугольника. Р=5+3+7=15 105/15=7, подобный треугольник больше данного в 7 раз, значит и стороны во столько же раз больше. 5*7=35 3*7=21 7*7=49 стороны: 35, 21, 49.
Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
Проведем вторую диагональ квадрата ВD, точку пересечения диагоналей обозначим О. Диагонали квадрата равны, пересекаются под прямым углом и точкой пересечения делятся пополам. Т.к. АМ=NC, то МО=NO. В четырехугольнике ВNDM диагонали перпендикулярны и точкой пересечения делятся пополам. Они делят его на 4 прямоугольных треугольника, в которых катеты равны, следовательно, эти треугольники равны, равны их гипотенузы и острые углы, т.е. диагонали - биссектрисы углов четырехугольника MBND. Т.к. накрестлежащие углы при пересечении сторон этого четырехугольника диагоналями ( биссектрисами) равны, то стороны BNDМ - параллельны, ⇒ BNDМ– параллелограмм. В параллелограмме ВNDМ стороны равны, его диагонали взаимно перпендикулярны, делят углы пополам, – это признаки ромба. ⇒ ВNDМ - ромб, ч.т.д.
105/15=7, подобный треугольник больше данного в 7 раз, значит и стороны во столько же раз больше.
5*7=35
3*7=21
7*7=49
стороны: 35, 21, 49.