AK=3.
Объяснение:
Українською
1. Використаємо узагальнену теорему Фалеса про пропорційні відрізки.
MK||BE||CD(з умови) Тоді:
AM/MB = AK/KE.
Оскільки з умови задачі сказано, що M - середина сторони AB, то AM=MB.
Звідси випливає, що AK = KE.
2. Доведемо, що фігура BCDE - паралелограм.
BC||ED(якщо прямі паралельні(як основи трапеції) то і відрізки, які належать прямим також паралельні)
BE||CD(умова). BCDE - паралелограм(за ознакою).
BC = DE = 20(за властивістю паралелограма)
3. AD = 2*AK+ED
AK = (AD-ED)/2 = (26-20)/2 = 3.
На русском
1. Используем обобщенную теорему Фалеса о пропорциональных отрезках.
MK||BE||CD(из условия) Тогда:
AM/MB = АК/КЕ.
Поскольку из условия задачи сказано, что M – середина стороны AB, то AM=MB.
Отсюда следует, что AK=KE.
2. Докажем, что фигура BCDE – параллелограмм.
BC||ED(если прямые параллельные(как основания трапеции) то и отрезки, принадлежащие прямым также параллельные)
BE||CD(условие). BCDE – параллелограмм(по признаку).
BC = DE = 20(по свойству параллелограмма)
3. AD = 2*AK+ED
AK=(AD-ED)/2=(26-20)/2=3.
рассмотрим треугольники abc и a1b1c1, у которых ав = a1b1, ас = a1c1 ∠ а = ∠ а1 (см. рис.2). докажем, что δ abc = δ a1b1c1.
так как ∠ а = ∠ а1, то треугольник abc можно наложить на треугольник а1в1с1 так, что вершина а совместится с вершиной а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и a1c1. поскольку ав = a1b1, ас = а1с1, то сторона ав совместится со стороной а1в1 а сторона ас — со стороной а1c1; в частности, совместятся точки в и в1, с и c1. следовательно, совместятся стороны вс и в1с1. итак, треугольники abc и а1в1с1 полностью совместятся, значит, они равны.