Воспользуемся теоремой о диагонали прямоугольного параллелепипеда: квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
На чертеже: а - длина, в - ширина, с - высота, d - диагональ.
d2 = а2 + в2 + с2.
422 + 122 + с2 = 522.
2 304 + 144 + с2 = 2 704.
2 448 + с2 = 2 704.
с2 = 2 704 - 2 448.
с2 = 256.
с = √256.
с1 = 16; с2 = -16 (второй корень не подходит, т.к. с - это высота параллелепипеда, значение которой не может быть выражено отрицательным числом).
Находим площадь поверхности параллелепипеда. У него 6 граней, каждая грань - это прямоугольник. Нужно найти площади каждой грани и сложить их. Формулой это можно записать так:
S поверх. = 2ас + 2ав + 2вс = 2 х (ас + ав + вс).
S поверх. = 2 х (48 х 16 + 48 х 12 + 12 х 16) = 2 х (768 + 576 + 192) = 2 х 1 536 = 3 072.
Находим объем параллелепипеда по формуле: V = а х в х с.
V = 48 х 12 х 16 = 9 216.
ответ: площадь поверхности параллелепипеда равна 3 072, его объем равен 9 216.
1. 24 см².
2. 7,4 см.
3. 1560 см².
4. 4,62 дм².
5. 3,2 см.
Объяснение:
1. S=1/2h(a+b), где a и b - основания трапеции, h-высота
S=1/2*3(6+10)=1/2*3*16=48/2= 24 см ²
***
2. SΔ=1/2ah, где а- основание h - высота.
14h/2=52;
14h=104;
h=104/14=7,4 см.
***
3. S=ah, где а- сторона параллелограмма, h - высота, опущенная на эту сторону.
Проведем h=BE⊥AD. Получим ΔABE с углами 60*, 90* и 30*.
h=АЕ=1/2AB=52/2=26 см .
S=60*26=1560 см².
***
4. S ромба =(d1*d2)/2=4,2*1,1= 4,62 дм². (11 см=1,1 дм).
***
5. Площадь треугольника равна S=ah/2, где а основание, h - высота к этой стороне.
S=16*11/2=88 см².
Найдем высоту, проведенную к стороне ВС=55 см.
S=55*h/2;
55h=88*2;
h= 176/55=3,2 см.